Tag: failurediagnosis

Homopolymer vs. Copolymer

By Bozilla
May 24, 2022

Material selection for an injection molding application can sometimes prove to be very challenging What happens if you identify a material then find that it can be supplied as a homopolymer or a random copolymer Is there a difference? The answer is YES The choice made for your project can affect part quality  

The Homopolymer:

homopolymer chain

A homopolymer has the same base unit which causes the molecular chain to have a high degree of consistency and size However, length can vary depending on how long the polymerization process is allowed to occur

The high degree of consistency in a homopolymer creates a high degree of regularity When many of these changes flow and combine, they are able to create a very tight entanglement and when they cool and shrink, they also have a high degree of crystallinity which increases shrink

The Copolymer:

copolymer chain

A copolymer, as shown in the image above, has more than one base unit and each base unit is a different size There can be more than two base units Due to the variation in size of the base units, the copolymer chains will be spaced much further from each other and have a higher degree of irregularity And similar to the homopolymer, the length of the molecule will depend on how long the polymerization process is allowed to occur

The high degree of irregularity does not allow the polymer chains to form a tight structure, leaving a lot of space between the molecular chains Therefore, when the polymer flows, there can be alignment but there will be more irregularity and not as tight of a structure which prevents excessive shrinkage

When comparing the two types of polymers, assuming each is the same length (same molecular weight, per se) the homopolymer will be much more organized and structured therefore creating more mechanical strength and chemical resistance but have high shrinkage The copolymer will have more random orientation which will create space between the molecules allowing for easier chemical attack and less mechanical strength and also have lower shrinkage Of course, we could discuss these comparisons in much more detail but we will stick to the basics for now

As material selection relates to injection molding, the properties of the material is a crucial factor

The major properties when comparing homopolymers to copolymers are:

  • shrinkage
  • chemical resistance
  • mechanical strength

Each of these properties must be considered with regards to the outcome of part quality

For example, when injection molding

Read More

The Reality of Core Shift- Is this happening to You?

By Bozilla
March 23, 2022

Core shift is not always obvious or suspected Recently, Bozilla Corporation was called upon to investigate a part that was warping differently and more than expected The customer had a flow simulation conducted by a third party and the warpage results did not match the actual part data Sometimes part warpage does not match the flow simulation and in many cases, it is easily explained However, after a quick investigation, the underlying cause of the excessive deflection was not easily understood It was time for our Team to troubleshoot

(The animations and images presented in this article do not represent the Customers actual part file and is just an example of how core deflection occurs)

Core deflection fill time graph

To begin the investigation, we compared the floor process to the simulation, which is standard operating procedure They matched fairly well They are never a perfect match but were very close We then looked at the part data and tool design then compared it to the data utilized in the flow analysis The data matched This was good news because through process of elimination, we were nearing the target

We then began taking a closer look at the part along with the flow simulation results We noticed that there were long features extending from the core side of the tool that the polymer had to flow around and down The features were thin so they did not have cooling in them therefore it was suspected that these long cores were heating up excessively causing the polymer to stress relieve and therefore warp However, the simulation software accounted for this to some degree and we did not see a trend that suggested the hot core feature was contributing to additional deflection

Having a long history with examining many polymers and how they behave in varying geometries caused us to take a closer look at the differential pressure within the cavity as it flowed around and along the long core features We discovered a significant pressure differential that occurred on either side of the core We also learned that the polymer did not freeze uniformly around that core during the 2nd stage pack process Having differential pressure and non-uniform freezing threw up a few flags

Core shift pressure graph

We had to investigate the impact of the differential pressure and non-uniform freezing on these features We knew it was time for a core-deflection analysis The customer was fairly confident that the P-20 tool steel was robust enough to

Read More

Key Factors in a Reliable Plastics Injection Molding Simulation Report

By Bozilla
November 30, 2021

I have written in a prior post about the key factors necessary in a plastics injection molding optimization analyst  Now, I would like to discuss the importance of a skillfully assembled simulation report  Jennifer Schmidt spoke of the key ingredients of a trustworthy injection molding simulation report in her talk at the Plastics Technology Molding 2021 conference In this brief, I will discuss the valuable information she provided and add additional feedback  If you want a successful outcome for your tool, these key components are essential to consider


Injection Molding simulation software


  • What version is being used and is the software up to date? Look for signs that the analyst is using an older version of software which will alter the results on the report, and ultimately the floor results

Typically, the output file(s) of the software contain the release version of the software  It might not be the absolute latest release of the software, but is should be a proven release which is typically a year old or less

Mesh quality for injection molding

2 Type of Mesh used: Consider the type of mesh that used for the part and the runner

  • Is the mesh type appropriate for the part geometry?
  • Is it precise enough in critical areas to capture important details?
  • Is the correct technology being used for the part geometry/runner combination, ie midplane, Dual-Domain, 3D or a specialty mesh used?
  • Will the report allow access to display the mesh?
  • Does the filling animation, weld lines and sink marks reveal insights into the mesh quality?

Consider: Simulations of the same part with the same material and same mesh density, but different mesh types for the part and runner, may produce different results for pressure at the fill-to-pack switchover point, which could make quite a difference in what occurs in an actual molding environment

There are many factors to consider and only a seasoned user with the proper education in the software will be able to make these determinations in order to provide the best analytical outcome

Material Data for injection molding


3 Material Data: An accurate molding prediction requires good material data

  • What was the material data in the simulation based on?
  • Was data on the actual material available?
  • Was the data a substitute?-a resin of the same generic family but has a
Read More

Is this the correct Injection Molding Machine for your Tool?

By Bozilla
November 8, 2021

To start this discussion I’d have to first state that the size of the tool plays a large role when selecting an injection molding machine  More specifically, it is the projected area that is of concern and how the projected area, along with the pressure distribution over that projected area, creates clamp force

Selecting a machine based on clamp force (tonnage) is more common when you have a part with a large projected area; ie multi-cavity tools, bumper fascias, housewares and many other items

In today’s economic climate, it’s more important than ever to conserve energy  Many believe that using the smallest IMM is the best way to achieve this cost savings  However, there are reasons why a smaller machine isn’t always the most efficient machine

 Reason 1: If an optimum process is the objective, select a machine that does not allow the tool to exceed the clamp force and flash the tool (blowing open)  during an  ‘optimized’ process

We  have had many concerned customers consult with us about the process Their questions are directed at finding out why the part is warping or exhibiting cosmetic defects  Once I dig into the process, I typically find that the part is not packed sufficiently due to the tool blowing open  In order to keep the tool closed, they must pack with very little pressure for a very short time  Packing with too little pressure, too little time, or both can cause a loss of control with dimensional stability and/or cosmetic issues due to excessive shrinkage  These issues create problems that are caused because the tool is in an IMM that doesn’t have the proper clamp force requirement

In the image below the clamp force required to fill and make the part is 250 Tons  However, in order to pack the part out sufficiently and make a good part (meets tolerances, minimal cosmetic defects, minimal deflection, etc) the clamp force required during 2nd stage pack is 1,450 Tons  That’s a very big difference

clamp force plot


 Reason 2: You are able to make parts but the process window is so small that staying within the process window is difficult or impossible to maintain

The inability to stay within a process window could be caused by several issues, especially since there are so many variables in the molding process  However, if the machine does not have sufficient clamp force to stay closed during an optimum molding process, concessions will be made and

Read More

Can Gate Location Really affect Part Warpage?

By Bozilla
August 17, 2021

Based on part geometry, gate location(s) will determine how the polymer fills the cavity  If the cavity doesn’t fill in a balanced/uniform fashion, the internal stresses will be anisotropic- meaning non-uniform properties  So it is important to place a gate in a location such that the polymer flowfront fills the cavity at a uniform rate and reaches the end of the cavity at all locations, including weld line locations, simultaneously

With simple part geometry, identifying an ideal gate location may be possible by using experience and examining the part  However, with more complex geometry and gating limitations (cooling line interference, ejector pin interference, slides, etc), it is nearly impossible to determine the appropriate gate location(s) without using FEA(flow simulation)  Not only can FEA(flow simulation) produce actual deflection results(warpage), it can also provide data that is a precursor to warpage-such as volumetric shrinkage and frozen-in stress which is typically due to a response from forcing the material into the cavity while the material is trying to freeze

gate location and part warpage courtesy of sciencedirectcom

Gate location(s) will determine polymer orientation  Based on that location, it will ultimately determine polymer shrinkage  Also, different regions of the part will cool at different rates(regions of the cavity near the gate that were first to fill will cool before regions furthest from the gate)


Why is this important?  Because there are 3 major components that contribute to warpage:

 Polymer Orientation

Polymer Shrinkage

Cooling Effects


Shrinkage and orientation are both directly correlated to injection location(s) on a part as it relates to processing conditions  Warpage due to cooling effects is  based on the rate of how the polymer cools on one side of the cavity relative to the other side Non-uniform cooling through the thickness will create warpage

Because gate location(s) directly correlates to the contributors of warpage, gate location is therefore extremely important in the tool creation process and ultimately the quality of the part

The injection molding professionals at Bozilla Corporation have over 20 years of experience assisting OEM’s, Tier 1 & Tier 2 suppliers, and Tool Shops to create quality parts that meet timing and goals



About the author

Chris Czeczuga President Bozilla Corporation

Chris Czeczuga is a Plastics Engineer, Injection molding expert, Military Veteran and the President of Bozilla Corporation He has proven success with many OEM’s Tier

Read More